Comparison of two forward solutions approaches in Lorentz Force Evaluation

E.-M. Dölker¹, R. Schmidt², K. Weise², B. Petković¹, M. Ziolkowski², H. Brauer², and Jens Haueisen¹

¹Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, 98693, Germany, eva-maria.doelker@tu-ilmenau.de

2 Advanced Electromagnetics Group, Technische Universität Ilmenau, Ilmenau, 98693, Germany,

reinhard.schmidt@tu-ilmenau.de

Two different forward models for Lorentz force evaluation, the approximate forward solution (AFS) and the novel extended area approach (EAA), are compared using a goal function scan. A laminated aluminum specimen that contains a cuboidal defect of the size 12 mm x 2 mm x 2 mm at 2 mm depth is simulated by the finite element method. Both methods are applied for defect reconstruction and showed a correct depth estimation with normalized root mean square errors (*NRMSE*) of 6.05 % for AFS and 1.67 % for EAA, respectively. The EAA yields defect dimensions of 11 mm x 2 mm x 2 mm, whereas AFS determines 7 mm x 10 mm x 2 mm.

Index Terms—Eddy current, Lorentz force evaluation, inverse problem, nondestructive evaluation

I. INTRODUCTION

HE LORENTZ force evaluation (LFE) is a nondestructive THE LORENTZ force evaluation (LFE) is a nondestructive method, which reconstructs defects from perturbations in Lorentz forces that act on a permanent magnet, which moves relatively to a conductive specimen. Previous defect reconstructions have been performed by truncated singular value decomposition [1], differential evolution [2] and current density reconstruction [3], where all were based on the approximate forward solution (AFS) [1]. Recently, the more accurate extended area approach (EAA) has been introduced as forward model for LFE [4]. It is the aim of the current study to compare the performance of AFS and the novel EAA with regard to defect reconstruction performance. For that purpose, a goal function scan [5] is applied to a simulated dataset obtained by the finite element method (FEM), which is used for modeling a specimen consisting of stacked aluminum sheets and a cuboidal defect.

Fig. 1. Benchmark problem: A package of aluminum sheets with a cuboidal defect is moved relatively to the spherical permanent magnet, where the interaction of the induced eddy currents (orange lines) with the magnetic field

leads to Lorentz forces; the figure is not to scale for better visualization.

II.METHODS

A. Benchmark problem

A specimen with $L \times W \times H = 400$ mm \times 400 mm \times 100 mm and the conductivity $\sigma_0 = 30.61 \text{ MS/m}$ is moved relatively to the permanent magnet with the velocity $v = 0.01$ m/s (Fig. 1). Due to the relative movement eddy currents are induced, where the interaction with the magnetic field leads to Lorentz forces. In presence of a defect these eddy currents are perturbed (Fig. 1) and so are the Lorentz forces. The specimen consists of stacked aluminum sheets, where each sheet possesses a thickness of $\Delta z = 2$ mm. The spherical permanent magnet with the homogenous magnetization *M* is located at the lift-off distance $\delta z = 1$ mm above the top surface of the specimen. It is characterized by a remanence of $B_r = 1.17$ T and a diameter $D_m = 15$ mm. A cuboidal defect with the conductivity $\sigma_d = 0$ S/m and $L_d \times W_d \times H_d = 12$ mm × 2 mm × 2 mm is located at the depth $d = 2$ mm.

B. Approximate Forward Solution and Extended Area Approach

The spherical permanent magnet is modelled as a magnetic dipole located at its center r_0 . The magnetic flux density at the point *r* can be calculated by

$$
B_{\rm p} = \frac{\mu_0}{4\pi} \left(3 \frac{\left[m \cdot (r - r_0) \right]}{\left| r - r_0 \right|^5} (r - r_0) - \frac{m}{\left| r - r_0 \right|^3} \right),\tag{1}
$$

where *m* denotes the magnetic moment. Due to the small velocity *v*, the secondary magnetic field from the induced eddy currents can be neglected. Thus, the weak reaction approach can be applied [6].

The defect response signal (DRS) ΔF [4], which forms the basis for the defect reconstruction is defined by

$$
\Delta F = \underbrace{\int_{V-V_{\rm d}} (j-j_0) \times B_{\rm p} dV - \int_{V_{\rm d}} j_0 \times B_{\rm p} dV}_{EAA},
$$
\n(2)

where j and j_0 represent the current density in the specimen with and without a defect, respectively. The volumes of the specimen and the defect are denoted by *V* and V_d .

The AFS neglects the first term of (2), which means that only the defect as a fictitious conducting region is taken into account for the calculation of the DRS. The defect is discretized into *K* volume elements (voxels) of volume $V_{\rm E}$. The DRS is then approximated by [1]

$$
\Delta F_{\rm AFS} = V_{\rm E} \sum_{k=1}^{K} \Delta \mathbf{j}_k \times \mathbf{B}_k \ . \tag{3}
$$

The distortion current density $\Delta j_k = -j_0$ can be calculated by Ohm's law for moving conductors $\Delta \mathbf{j}_k = -\sigma_0 \left(-\nabla \varphi_k + \mathbf{v} \times \mathbf{B}_k \right)$ [1], where B_k denotes the magnetic flux densities inside the voxels. The EAA extends the region for forward calculation in x – and y – direction around the defect, which approximates the first term of (2). The extended area is discretized into *E* cuboidal voxels. Thus ΔF is approximated by [4]

$$
\Delta F_{\text{EAA}} = V_{\text{E}} \sum_{e=1}^{E} \Delta j_e \times B_e + \Delta F_{\text{AFS}} , \qquad (4)
$$

where the magnetic flux densities inside the extended voxels are denoted by B_e . The distortion current densities Δj_e in the outer voxels can be determined by [4]

$$
\Delta \boldsymbol{j}_e \cong C_{\rm d} \frac{V_{\rm E}}{2\pi\Delta z} \sum_{k=1}^K \left[2\frac{\Delta \boldsymbol{j}_k \cdot (\boldsymbol{r}_e - \boldsymbol{r}_k)}{|\boldsymbol{r}_e - \boldsymbol{r}_k|^4} (\boldsymbol{r}_e - \boldsymbol{r}_k) - \frac{\Delta \boldsymbol{j}_k}{|\boldsymbol{r}_e - \boldsymbol{r}_k|^2} \right],\tag{5}
$$

where the dipolar correction factor $C_d = 1 + (\pi/4)(L_d/W_d)$ holds for cuboidal defects [4]. The position vectors of the voxels' centroids in the defect and the extended region are denoted by r_k and r_e , respectively.

For the EAA, the decision of an appropriate expansion size is important. The DRS ΔF_{EAA} is calculated for the benchmark problem for the extensions $ex = [0, 1, 2, ..., 7]$ max (L_d, W_d) in $\pm x$ – and *y* – direction, where 0 means AFS is applied. The expansion has been chosen to $ex = 5 \cdot max(W_d, L_d)$ as the adapted normalized root mean square error (aNRMSE)-stopped improving.

C.Goal Function Scan

The DRS is calculated by AFS according to (3) and by EAA according to (4), respectively, for the combinations of $L_d = [1, 2, ..., 50$ mm and $W_d = [1, 2, ..., 50$ mm from the 1st to the 11th layer. For each calculation, the *aNRMSE* is determined as a goal function value by *aNRMSE*

$$
\frac{1}{2}\sum_{i=x,z}\left[\frac{\sqrt{\frac{1}{N}\sum_{n=1}^{N}(\Delta F_{n,i}^{\text{AFSEAA}}-\Delta F_{n,i}^{\text{FEM}})^2}}{\min[(\max_{n=1...N}\Delta F_{i}^{\text{AFSEAA}}-\min_{n=1...N}\Delta F_{i}^{\text{AFSEAA}})\left(\max_{n=1...N}\Delta F_{i}^{\text{FEM}}-\min_{n=1...N}\Delta F_{i}^{\text{FEM}})\right]}\right],
$$
(6)

where *n* indicates the current position of the magnetic dipole. Only the x -and z -error components are used since the y component of the DRS shows too large errors for both forward models. For every aluminum layer, the $L_d - W_d$ -combination with the lowest *aNRMSE* is determined for AFS and EAA. The layer with the lowest *aNRMSE* gives the result for the depth and the size of the defect produced by the goal function scan for AFS and EAA.

III. RESULTS AND DISCUSSION

Fig. 2 shows the *aNRMSE* and the corresponding estimated defect extensions $L_d \times W_d$ in x – and y – direction in mm² (indices, Fig.2) over the aluminum layers for AFS and EAA. It can be observed that both methods determine the defect depth at layer 2 correctly, whereas AFS reconstructs a size of $7 \text{ mm} \times 10 \text{ mm} \times 2 \text{ mm}$ and EAA of $11 \text{ mm} \times 2 \text{ mm} \times 2 \text{ mm}$.

respectively.

Fig. 2. Results of the goal function scan based on AFS and EAA for a cuboidal defect with $x - y -$ extension (12×2) mm² at the depth 2 mm: The minimal $aNRMSE$ and its corresponding estimated defect extension $(L_d \times W_d)$ mm² are shown for each layer. The correct defect depth (layer 2) has been found for both forward solutions, whereas the EAA estimates the defect shape more accurately. The rounded *aNRMSE* values are shown in the table.

IV. CONCLUSION

The comparison of AFS and EAA for LFE based on a goal function scan shows that correct defect depth can be estimated with both methods, whereas a better shape reconstruction can be achieved by using the EAA. Current work focuses on the application of the EAA to measurement data.

REFERENCES

- [1] B. Petković, J. Haueisen, M. Zec, R. P. Uhlig, H. Brauer and M. Ziolkowski. Lorentz force evaluation: A new approximation method for defect reconstruction. NDT & E International, vol. 59, pp. 57–67, 2013.
- [2] J. Mengelkamp, D. Lattner, J. Haueisen, M. Carlstedt, K. Weise, H. Brauer, M. Ziolkowski and R. Eichardt. Lorentz force evaluation with differential evolution. IEEE Transactions on Magnetics, vol. 52, no. 5, pp. 6201310 (1-10), 2016.
- [3] J. Mengelkamp, M. Carlstedt, K. Weise, M. Ziolkowski, H. Brauer and J. Haueisen. Current density reconstructions for Lorentz force evaluation. Research in Nondestructive Evaluation, pp. 1-25, 2016.
- [4] M. Ziolkowski, Modern methods for electromagnetic field problems. Szczecin, Poland: West Pomeranian University of Technology College Publisher, 2015.
- [5] J. C. Mosher, P. S. Lewis and R. M. Leahy. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Transactions on Biomedical Engineering., vol. 39, no. 6, pp. 541-557, 1992.
- [6] M. Zec, R. P. Uhlig, M. Ziolkowski and H. Brauer, Fast technique for Lorentz force calculations in nondestructive testing applications, IEEE Transactions on Magnetics, vol. 50, no. 2, pp. 7003104 (1-4), 2014.